Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Diagnostics (Basel) ; 13(9)2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2319493

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by fast evolution with the appearance of several variants. Next-Generation Sequencing (NGS) technology is considered the gold standard for monitoring known and new SARS-CoV-2 variants. However, the complexity of this technology renders this approach impracticable in laboratories located in areas with limited resources. We analyzed the capability of the ThermoFisher TaqPath COVID-19 RT-PCR (TaqPath) and the Seegene Novaplex SARS-CoV-2 Variant assay (Novaplex) to detect Omicron variants; the Allplex VariantII (Allplex) was also evaluated for Delta variants. Sanger sequencing (SaS) was the reference method. The results obtained with n = 355 nasopharyngeal samples were: negative with TaqPath, although positive with other qualitative molecular assays (n = 35); undetermined (n = 40) with both the assays; negative for the ∆69/70 mutation and confirmed as the Delta variant via SaS (n = 100); positive for ∆69/70 and confirmed as Omicron BA.1 via SaS (n = 80); negative for ∆69/70 and typed as Omicron BA.2 via SaS (n = 80). Novaplex typed 27.5% of samples as undetermined with TaqPath, 11.4% of samples as negative with TaqPath, and confirmed 100% of samples were Omicron subtypes. In total, 99/100 samples were confirmed as the Delta variant with Allplex with a positive per cent agreement (PPA) of 98% compared to SaS. As undermined samples with Novaplex showed RdRp median Ct values (Ct = 35.4) statistically higher than those of typed samples (median Ct value = 22.0; p < 0.0001, Mann-Whitney test), the inability to establish SARS-CoV-2 variants was probably linked to the low viral load. No amplification was obtained with SaS among all 35 negative TaqPath samples. Overall, 20% of samples which were typed as negative or undetermined with TaqPath, and among them, twelve were not typed even by SaS, but they were instead correctly identified with Novaplex. Although full-genome sequencing remains the elected method to characterize new strains, our data show the high ability of a SNP-based assay to identify VOCs, also resolving samples typed as undetermined with TaqPath.

2.
Diagnostics (Basel) ; 12(9)2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1997543

ABSTRACT

The continuous transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has required that diagnostic capabilities be constantly monitored and updated as new variants emerge and prior variants disappear. Although whole genome sequencing provides full characterisation of SARS-CoV-2 directly from patient samples, this has limited throughput and requires sufficient resources. To enhance screening for circulating variants, we designed a rapid in-house RT-PCR assay to target a spike mutation (D950N) in Delta variants, which is not detected in the remaining variants of concern (VOCs). Assay sensitivity for detecting Delta variants was 93% and specificity was 100% using a sequenced sample bank of several lineages. As the D950N mutation is prevalent in >95% of the global Delta variant sequences deposited in GISAID, this assay has the potential to provide rapid results to determine if the samples are presumptively Delta variants and can support clinicians in timely clinical decision-making for effective treatments and surveillance.

3.
J Virol Methods ; 303: 114497, 2022 05.
Article in English | MEDLINE | ID: covidwho-1693166

ABSTRACT

Tracking severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants through whole genome sequencing (WGS) is vital for effective infection control and prevention (IPC) measures, but can be time-consuming and resource-heavy. We describe an in-house validation of an allele-specific polymerase chain reaction (ASP) variant assay to detect variants of concern (VOC). ASP sensitivity for detecting Delta, Alpha and Beta was 99.45 %, 100 %, and 66.67 %, respectively, compared with WGS. Specificity was 100 % in detecting all three VOC. ASP generated results 1.3 days faster compared with WGS. These findings suggest using variant assays such as ASP may enhance epidemiological surveillance and IPC measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Alleles , COVID-19/diagnosis , Humans , Mutation , Polymerase Chain Reaction , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL